# 미세 먼지 센서를 활용한 공기 청정기 만들기



# **CODING PEOPLE** ARDUINO PROJECT



코딩피플

본 참고용 자료는 **'스토아 포 코딩피플'** 에서 **'아두이노 공기청정기'** 키트를 구매하신 고객님께 도움을 드리기 위하여 제작되었습니다.

자료의 내용은 실습하시는 환경에 따라 조금씩 차이가날 수 있다는 점 양해바랍니다.

궁금하신 점은 아래의 다양한 채널을 통해서 문의하시길 바랍니다. 가능한 빠른 시간 내에 도움드릴 수 있도록 하겠습니다.





코딩피플에 의해서 작성된 본 참고용 자료는 크리에이티브 커먼즈 저작자표시-비영리 2.0 대한민국 라이선스에 따라 이용할 수 있습니다. https://creativecommons.org/licenses/by-nc/2.0/kr/

# **CONTENTS**

Step 1. MDF 모형과 아두이노 등 결합

Step 2. 회로도 구성

Step 3. 코딩

Step 4. 테스트

## **안전사고** 주의사항

본 키트 사용 전 <mark>반드시</mark> 아래의 주의사항을 숙지하여 안전사고 없는 즐거운 학습 및 실습 되시길 바랍니다.

1. MDF 모형 조립 시 손가락 등 끼임 주의



#### 2. 칼, 송곳, 전선 핀 등 사용 시 베임이나 찔림 주의



#### 3. 글루건, 납땜용 인두기 등 사용시 화상 주의



#### 4. 아두이노 및 모듈 등의 후면 납땜 부위 베임 주의







02 MDF 모형 밑판과 지지대를 아래와 같이 결합 합니다.



01 배터리 홀더를 거치하게 될 MDF 모형 밑판과 지지대 (4조각)를 준비합니다.

### Step 1. MDF 모형과 아두이노 등 결합

### Step 1. MDF 모형과 아두이노 등 결합





#### LCD를 MDF 모형에 결합하고, M3 x 12 볼트를 앞쪽 면에서 뒤쪽으로 꽂아주세요.



04



### Step 1. MDF 모형과 아두이노 등 결합

05 MDF 모형 뒤쪽으로 나온 볼트를 M3 너트를 돌려 결합하고 LCD를 고정합니다.





06

쿨링 팬이 결합될 MDF 모형과 M3 x 20 볼트, M3 너트, XH2.54mm F 커넥터를 준비합니다.



### Step 1. MDF 모형과 아두이<u>노 등 결합</u>

07 MDF 모형의 안쪽이 쿨링 팬의 제품 정보 스티커가 없는 부분과 맞닿도록 하여 M3 x 20 볼트를 위에서 아래로 넣습니다.



![](_page_7_Picture_3.jpeg)

08 쿨링 팬 고정 구멍으로 나온 볼트를 M3 너트로 돌려 결합 합니다.

![](_page_7_Picture_5.jpeg)

![](_page_7_Picture_6.jpeg)

### Step 1. MDF 모형과 아두이노 등 결합

![](_page_8_Picture_1.jpeg)

#### 쿨링 팬의 전선 끝과 XH2.54mm F 커넥터를 연결합니다. (핀 타입일 경우 생략)

![](_page_8_Picture_3.jpeg)

![](_page_8_Picture_4.jpeg)

#### 10 헤파 필터가 부착될 MDF 모형과 고정 프레임 MDF, M3 x 6 볼트를 준비합니다.

![](_page_8_Picture_6.jpeg)

![](_page_9_Picture_1.jpeg)

![](_page_9_Picture_2.jpeg)

![](_page_9_Picture_3.jpeg)

![](_page_9_Picture_4.jpeg)

![](_page_9_Picture_5.jpeg)

11 헤파 필터의 매끈한 부분을 MDF 모형에 부착하고 고정 프레임 MDF을 덮어 줍니다.

#### Step 1. MDF 모형과 아두이노 등 결합

14

![](_page_10_Picture_1.jpeg)

덮개 MDF와 USB 커넥터 구멍의 볼트 구멍을 맞춰 M3 x 6 볼트로 고정해 줍니다.

![](_page_10_Picture_3.jpeg)

13 USB 커넥터 구멍이 있는 MDF 모형과 덮개 MDF, M3 x 6 볼트를 준비합니다.

#### Step 1. MDF 모형과 아두이노 등 결합

01

아두이노 나노의 USB 커넥터가 바깥 쪽으로 위치하도록 하여 브레드보드에 아래와 같이 결합 합니다.

![](_page_11_Picture_3.jpeg)

Check!! 브레드보드 후면 스티커 제거 후 MDF 모형에 부착해요!

![](_page_11_Picture_5.jpeg)

02

배터리 홀더의 + (빨강), - (검정) 전원선을 브레드보드에 아래와 같이 연결하여 외부 전원을 확장해 줍니다.

![](_page_12_Picture_3.jpeg)

03

배터리 홀더가 연결된 브레드보드 라인에서 + 전원은 나노의 Vin 핀에 연결하고, - 전원은 나노의 GND에 연결 합니다.

![](_page_13_Figure_3.jpeg)

04 배터리 홀더가 연결된 브레드보드 라인에서 + 전원은 LCD I2C 모듈의 VCC 핀에 연결하고, - 전원은 LCD I2C 모듈의 GND에 연결 합니다.

![](_page_14_Figure_2.jpeg)

05

LCD I2C 모듈의 SDA 핀은 나노의 아날로그 4번 (A4) 핀에 연결하고, SCL 핀은 나노의 아날로그 5번 (A5) 핀에 연결합니다.

![](_page_15_Figure_3.jpeg)

06

배터리 홀더가 연결된 브레드보드 라인에서 미세먼지 센서 회로 구성을 위해서 아래와 같이 + 전원(빨강)과, - 전원(검정)을 확장해 주세요.

![](_page_16_Picture_3.jpeg)

07 미세먼지 센서와 결합된 전용선 중 빨강선(VCC)은 앞서 확장된 + 전원과 같은 라인에 연결하고, 검정선(Vo)은 나노의 A0 핀에 꽂아 주세요.

![](_page_17_Figure_2.jpeg)

08 미세먼지 센서와 결합된 전용선 중 노랑선(S\_GND)은 앞서 확장된 - 전원과 같은 라인에 연결하고, 초록선(LED)은 나노의 D2 핀에 꽂아 주세요.

![](_page_18_Figure_2.jpeg)

09

미세먼지 센서와 결합된 전용선 중 파랑선(LED\_GND)은 앞서 확장된 - 전원과 같은 라인에 연결하고, 흰색선(V\_LED)은 150옴 저항을 통해 + 전원과 연결합니다.

![](_page_19_Figure_3.jpeg)

10220uF 커패시터로 파란선, 노란선이 연결된 – 전원 라인과 흰색선이 연결된 라인을<br/>연결하고, 150옴 저항으로 흰색선 라인과 + 전원 라인을 연결해 주세요.

![](_page_20_Figure_2.jpeg)

11 배터리 홀더가 연결된 브레드보드에 쿨링 팬 전선 끝 커넥터의 빨강선 부분을 + 전원, 검정선 부분을 – 전원 라인에 연결 합니다.

![](_page_21_Picture_2.jpeg)

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)

01

아두이노 통합개발환경(IDE) 설치를 위해서 웹 브라우저에서 arduino.cc 로 접속해 주세요.

![](_page_23_Picture_3.jpeg)

![](_page_23_Picture_4.jpeg)

![](_page_23_Picture_5.jpeg)

03

IDE 설치 파일을 다운로드하기 위해 사용하시는 운영체제(OS)를 선택해 주세요. (운영체제 Windows 10 이상 사용 시 설치 예시)

![](_page_24_Picture_3.jpeg)

04

#### JUST DOWNLOAD를 클릭하면 파일이 다운로드 됩니다. (절차에 따라 설치)

![](_page_24_Picture_6.jpeg)

05

(구버전 설치) SOFTWARE 메뉴 페이지 아래 부분으로 마우스 휠 스크롤하시면 Legacy IDE(1.8.X) 가 있습니다. (운영체제 Windows 7 이상 사용 시 설치 예시)

![](_page_25_Picture_3.jpeg)

06 JUST DOWNLOAD를 클릭하면 파일이 다운로드 됩니다. (절차에 따라 설치)

![](_page_25_Picture_5.jpeg)

![](_page_26_Figure_1.jpeg)

#### New IDE (2.x.x) 실행화면

![](_page_26_Figure_3.jpeg)

![](_page_26_Picture_4.jpeg)

#### Legacy IDE(1.x.x) 실행 화면

![](_page_26_Picture_6.jpeg)

07

라이브러리 설치를 위해서 상단 메뉴 [스케치] – [라이브러리 포함하기] – [라이브러리 관리]를 실행시켜 주세요.

![](_page_27_Picture_3.jpeg)

08

라이브러리 매너저에서 "hd44780"을 검색 후 아래의 라이브러리를 설치 해주세요.

|    | ◎ 라이브러리 매니저                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | × |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | 타입 All V 토픽 All I hd44780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 설치 | hd44780<br>by Bill Perry 버전 1.3.2 INSTALLED<br>Extensible hd44780 LCD library. hd44780 is an extensible LCD library for hd44780 based LCD displays. The API functionality<br>provided by the hd44780 library class, when combined with an hd44780 library i/o subclass, is compatible with the API<br>functionality of the Ardunio LiquidCrystal library as well as most of the LCD API 1.0 Specification. The hd44780 API also<br>provides some additional extensions, including return status for API functions, ability to read from the LCD, and ability to<br>configure the LCD command execution timing. hd44780 currently includes i/o subclasses for Arduino direct pin control, i2c<br>expander backpacks, and LCDs with native i2c interface. Keywords: hd44780 Icl 2cd isplay hd44780_I2CICd LiquidCrystal Bill Perry bperrybap duinowitchery HC1627 Noritake CU165ECBP-T23 NTCU2002SECP8<br>More info |   |
| -  | by Jean-Marc Paratte PCF8574 Arduino Library. PCF8574/PCF8574A - Remote 8-bit I/O expander for 12C-bus with interrupt. Example usage: The LCM2004A liquid crystal display module (HD44780U device) interfaced for 12C with a PCF8574. Device datasheet: https://www.nxp.com/docs/en/data-sheet/PCF8574_PCF8574A.pdf More info E7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~ |

09

코드

```
🥯 AirFresh | 아두이노 1.8.16
                                                  Х
파일 편집 스케치 툴 도움말
-
AirFresh
#include <Wire.h>
#include <hd44780.h>
#include <hd44780ioClass/hd44780 I2Cexp.h>
hd44780 I2Cexp lcd;
int Vo = A0, V LED = 2;
int cnt = 0;
float Vo value = 0.0, Voltage = 0.0;
float dustDensity = 0.0, sumDustDensity = 0.0;
float avg;
void setup() {
  Serial.begin(9600);
  lcd.begin (16, 2);
  pinMode(V LED, OUTPUT);
}
```

10

코드

```
🥯 AirFresh | 아두이노 1.8.16
                                                           ×
파일 편집 스케치 툴 도움말
Ø
AirFresh
void loop() {
  digitalWrite(V LED, LOW);
  delayMicroseconds(280);
  Vo value = analogRead(Vo);
  delayMicroseconds(40);
  digitalWrite(V LED, HIGH);
  delayMicroseconds(9680);
  Voltage = Vo value * 5.0 / 1023.0;
  dustDensity = (Voltage - 0.3) / 0.005;
  cnt++;
  if(cnt == 60){
    sumDustDensity = avg;
    cnt = 2;
  }
  sumDustDensity += dustDensity;
  avg = sumDustDensity / cnt;
  lcd.clear();
  lcd.setCursor (0,0);
  lcd.print("Dust : ");
  if (avg < 0) {
    avg = 0;
  }
  lcd.print(avg, 2);
  lcd.setCursor (0,1);
  lcd.print("Have a nice day!");
  delay(5000);
}
```

### Step <u>4. 테스트</u>

![](_page_30_Figure_1.jpeg)

#### (신버전) 작성된 코드를 업로드하기 전, [툴] 메뉴에서 [보드]를 설정해 주세요.

![](_page_30_Figure_3.jpeg)

#### 02 (신버전) [보드] 설정이 되었다면 [포트]를 설정해 주세요.

| File | Edit Sketch      | Tools Help                                       |                              |             |                                                                                        |
|------|------------------|--------------------------------------------------|------------------------------|-------------|----------------------------------------------------------------------------------------|
|      |                  | Auto Format<br>Archive Sketch                    | Ctrl+T                       |             |                                                                                        |
| Ē    | sketch           | Manage Libraries<br>Serial Monitor               | Ctrl+Shift+I<br>Ctrl+Shift+M |             | Tip. 아두이노 나노 보드 종류에                                                                    |
| t    | 2<br>3<br>4      | Firmware Updater<br>Upload SSL Root Certificates |                              | once:       | 따라 프로세서가 다를 수 있음                                                                       |
|      | 5<br>6<br>7<br>8 | Board: "Arduino Nano"<br>Port<br>Get Board Info  | ¢                            | repeatedly: | <ul> <li>ATmega328P</li> <li>ATmega328P (Old Bootloader)</li> <li>ATmega168</li> </ul> |
| ÷    | 9<br>10          | Processor: "ATmega328P (Old Bo                   | ootloader)"                  | ATmega328P  |                                                                                        |
| Q    |                  | Programmer<br>Burn Bootloader                    | H                            | ATmega168   |                                                                                        |

#### 03 (신버전) [보드] 설정이 되었다면 [포트]를 설정해 주세요.

| File Edi | it Sketch | Tools Help                  |              |                       |
|----------|-----------|-----------------------------|--------------|-----------------------|
|          |           | Auto Format                 | Ctrl+T       |                       |
|          | V         | Archive Sketch              |              |                       |
| P        | sketch    | Manage Libraries            | Ctrl+Shift+I |                       |
|          | 1         | Serial Monitor              | Ctrl+Shift+M | Tip 아두이노 나노 보드 연격 환경에 |
|          | 2         | Serial Plotter              |              | to run once:          |
| 1        | 3         | Firmware Updater            |              | 🔹 따라 포트 번호는 다를 수 있음.  |
|          | 4         | Upload SSL Root Certificate | IS           |                       |
| IIIk     | 5         |                             |              | - [ ːcom] 이 아닌 것을 선택  |
|          | 6         | Board: "Arduino Nano"       |              |                       |
|          | 7         | Port                        |              | Senal ports tedly:    |
|          | 8         | Get Board Info              |              | COM7                  |
| ~~       | 9<br>10   | Processor: "ATmega328P"     |              | COM1                  |
| Q        | 10        | Programmer                  |              | <b>&gt;</b>           |
|          |           | Burn Bootloader             |              |                       |
|          |           |                             |              |                       |

#### Step 4. 테스트

04

#### (구버전) 작성된 코드를 업로드하기 전, [툴] 메뉴에서 [보드]를 설정해 주세요.

| 파일 편집 스케지 툴   | 도움말                                 |              |                                  |
|---------------|-------------------------------------|--------------|----------------------------------|
|               | 가동 포맷                               | Ctrl+T       |                                  |
|               | 스케치 보관하기                            |              |                                  |
| sketch_dec23a | 인코딩 수정 & 새로 고침                      |              |                                  |
| void se       | 라이브러리 관리                            | Ctrl+Shift+I |                                  |
| vora bo       | 시리얼 모니터                             | Ctrl+Shift+M |                                  |
| // pu         | 시리얼 플로터                             | Ctrl+Shift+L | , to run once:                   |
|               | WiFi101 / WiFiNINA Firmware Updater |              |                                  |
| }             | 보드: "Arduino Nano"                  | ;            | 보드 매니저                           |
|               | 프로세적: "ATmega328P"                  | 3            | Arduino Yún                      |
|               | 포트                                  | 2            | Arduino Uno                      |
| void lo       | 보드 정보 얻기                            |              | Arduino Duenilanove or Diecimila |
| // pu         | 프로그래머: "AVRISP mkll"                |              | Arduino Nano                     |
| // Pu         | 부트로더 굽기                             |              | Arduino Mega or Mega 2000        |

#### 05 (구버전) [보드] 설정이 되었다면 [포트]를 설정해 주세요.

| 파일 편집 스케치 툴   | - 도움말                           |              |                             |                             |
|---------------|---------------------------------|--------------|-----------------------------|-----------------------------|
|               | 자동 포맷                           | Ctrl+T       |                             |                             |
|               | 스케치 보관하기                        |              |                             |                             |
| sketch_dec23a | 인코딩 수정 & 새로 고침                  |              |                             |                             |
| void se       | 라이브러리 관리                        | Ctrl+Shift+I |                             |                             |
|               | 시리얼 모니터                         | Ctrl+Shift+M | Tip. 0                      | 두이노 나노 보드 송류에               |
| // pu         | 시리얼 플로터                         | Ctrl+Shift+L | , to run once:              |                             |
|               | WiFi101 / WiFiNINA Firmware Upd | ater         |                             | 프로세셔가 다들 수 있음               |
| }             | 보드: "Arduino Nano"              | >            |                             |                             |
| ,             | 프로세서: "ATmega328P"              |              | ATmega328P                  | ATmega328P                  |
|               | 포트                              | 2            | ATmega328P (Old Bootloader) | ATmega328P (Old Bootloader) |
| void lo       | 보드 정보 얻기                        |              | ATmega168                   | ATmega168                   |
| // pu         | 프로그래머: "AVRISP mkll"<br>부트로더 굽기 | >            | to run repeat               |                             |

#### 06 (구버전) [보드] 설정이 되었다면 [포트]를 설정해 주세요.

![](_page_31_Figure_7.jpeg)

# Step 4. 테스트

![](_page_32_Picture_1.jpeg)

센서 값을 미세조정 방법! 빨간 원 안의 나사를 천천히 양쪽 방향 돌려주세요.

※ 테스트 결과가 업로드한 코드처럼 동작하지 않는다면? [Step2. 회로도 구성] 과 [Step 3. 코딩] 부분을 다시 확인하여 수정하시길 바랍니다.

#### Step 5. MDF 모형 조립

01 테스트가 완료되면 부품이 결합된 모든 MDF 모형을 준비합니다.

![](_page_33_Picture_2.jpeg)

※ 공기청정기 키트는 팬을 통해서 들어오는 공기 외에는 최대한 외부 공기가

유입되지 않도록 설계 되었습니다.

따라서 MDF 모형 결합 부위가 비교적 빡빡하므로 결합 시 더 큰 힘이 필요합니다.

#### Step 5. MDF 모형 조립

02 테스트가 완료되면 부품이 결합된 모든 MDF 모형을 준비합니다.

![](_page_34_Picture_2.jpeg)

※ MDF 모형 조립을 원활하게 하기 위해서 테스트가 완료된 쿨링 팬의 전원과 LCD의 전원 및 신호 선을 임시로 제거 합니다.

해당 부분 조립 시 재 연결하면서 MDF 모형 조립을 진행 합니다.

![](_page_35_Picture_1.jpeg)

04 배터리 홀더 지지대 모형을 브레드보드 부착 모형의 홈에 끼워줍니다. (양쪽)

![](_page_35_Picture_3.jpeg)

03 배터리 홀더 거치대 모형과 브레드보드가 부착된 모형을 결합 합니다.

06

![](_page_36_Picture_1.jpeg)

LCD 고정 모형과 배터리 홀더 거치대 모형을 아래와 같이 결합 합니다.

![](_page_36_Picture_3.jpeg)

05 MDF 모형 결합을 위해서 빼 놓았던 점퍼선을 LDC 재연결 합니다.

![](_page_37_Picture_1.jpeg)

![](_page_37_Picture_2.jpeg)

나노 보드의 USB 커넥터가 없는 쪽 부분과 아래와 같이 결합 합니다. 80

![](_page_37_Picture_4.jpeg)

![](_page_37_Picture_5.jpeg)

![](_page_38_Picture_1.jpeg)

10 헤파 필터가 부착된 모형과 본체 모형을 아래와 같이 결합 합니다.

![](_page_38_Picture_3.jpeg)

09 헤파 필터가 부착된 모형을 준비 합니다.

![](_page_39_Picture_1.jpeg)

![](_page_39_Picture_2.jpeg)

12 미세먼지 센서가 거치된 모형을 옆쪽 모형의 위쪽 홈에 끼워 결합 합니다.

![](_page_39_Picture_4.jpeg)

11 쿨링 팬의 전선 커넥터를 +, - 전원을 구분하여 브레드보드에 다시 꽂아줍니다.

![](_page_40_Picture_1.jpeg)

14 USB 커넥터 구멍이 있는 모형을 본체에 아래와 같이 결합 합니다.

![](_page_40_Picture_3.jpeg)

13 USB 커넥터 구멍이 있는 모형을 준비 합니다.

![](_page_41_Picture_1.jpeg)

![](_page_41_Picture_2.jpeg)

16 아래쪽 배터리 홀더의 스위치를 ON 시키면 공기청정기가 동작 합니다.

![](_page_41_Picture_4.jpeg)

![](_page_41_Picture_5.jpeg)

15 쿨링 팬이 고정된 모형을 본체 모형에 덮어서 결합 합니다.

![](_page_42_Picture_0.jpeg)

#### Memo

| , |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

# CODING PEOPLE ARDUINO PROJECT 공기 청정기 만들기

![](_page_43_Picture_1.jpeg)

![](_page_43_Picture_2.jpeg)