^{초음파 센서를} 활용한 장애물 회피 로봇

CODING PEOPLE ARDUINO PROJECT

본 참고용 자료는 **'스토아 포 코딩피플'** 에서 **'초음파 장애물 회피 로봇'** 키트를 구매하신 고객님께 도움을 드리기 위하여 제작되었습니다.

자료의 내용은 실습하시는 환경에 따라 조금씩 차이가날 수 있다는 점 양해바랍니다.

궁금하신 점은 아래의 다양한 채널을 통해서 문의하시길 바랍니다. 가능한 빠른 시간 내에 도움드릴 수 있도록 하겠습니다.

코딩피플에 의해서 작성된 본 참고용 자료는 크리에이티브 커먼즈 저작자표시-비영리 2.0 대한민국 라이선스에 따라 이용할 수 있습니다. https://creativecommons.org/licenses/by-nc/2.0/kr/

CONTENTS

Prologue. Kit 소개 및 작동원리, 기본 구성품

Step 1. MDF 모형과 아두이노 등 결합

Step 2. 회로도 구성

Step 3. 코딩

Step 4. 테스트

Step 5. MDF 모형 조립

안전사고 주의사항

본 키트 사용 전 <mark>반드시</mark> 아래의 주의사항을 숙지하여 안전사고 없는 즐거운 학습 및 실습 되시길 바랍니다.

1. MDF 모형 조립 시 손가락 등 끼임 주의

2. 칼, 송곳, 전선 핀 등 사용 시 베임이나 찔림 주의

3. 글루건, 납땜용 인두기 등 사용시 화상 주의

4. 아두이노 및 모듈 등의 후면 납땜 부위 베임 주의

Prologue. Kit 소개 및 작동 원리

초음파 센서와 장애물 간의 거리를 측정하여 코드에 주어진 조건 이내에 장애물이 있으면 진행 방향을 바꿔 장애물을 피해가는 로봇 생활 속 예시 : 로봇 청소기 등

Prologue. Kit 기본 구성품

01 MDF 모형 밑면과 1인치 볼캐스터의 볼트 구멍에 10mm 볼트를 넣어 줍니다.

MDF 모형 밑면과 1인치 볼캐스터가 고정되도록 너트로 조여 줍니다. (드라이버 사용)

02

03 실라켓, 두께 확장용 MDF 모형, 모터 기어박스 순으로 30mm 볼트를 넣어 줍니다.

MDF 모형 우측면의 볼트 구멍과 튀어나온 30mm 볼트를 드라이버로 결합 합니다.

04

05 브라켓, 두께 확장용 MDF 모형, 모터 기어박스 순으로 30mm 볼트를 넣어 줍니다.

MDF 모형 좌측면의 볼트 구멍과 튀어나온 30mm 볼트를 드라이버로 결합 합니다.

06

07 MDF 모형 밑면과 우측면을 아래와 같이 모양에 맞춰 결합 합니다.

08 밑면의 아래쪽에서 8mm 볼트를 넣어 측면의 브라켓과 고정 합니다. (좌, 우 동일)

10 MDF 모형과 모터 드라이버를 6mm 볼트로 고정 해줍니다.

09 배터리 홀더 거치대 모형 뒷면에 모터 드라이버의 볼트 구멍을 맞춰 줍니다.

Step 1. MDF 모형과 아두이노 등 결합

11 아두이노 나노 보드를 미니 브레드보드에 결합하고, 뒷면의 스티커를 제거 합니다.

12 MDF 모형 후면에 아래와 같이 미니 브레드보드를 붙여 줍니다.

01 우측 모터의 전선을 모터 드라이버로 아래와 같이 연결 합니다.

02 좌측 모터의 전선을 모터 드라이버로 아래와 같이 연결 합니다.

03 모터, 모터 드라이버, 나노가 결합된 미니 브레드보드를 아래와 같이 배치 합니다.

04 배터리 홀더의 빨강(+), 검정(-) 전선을 브레드보드의 아래쪽 빈 공간에 꽂아 줍니다.

05

배터리 홀더의 (+), (-) 전선이 나노의 Vin 핀(+)과 GND 핀(-)으로 연결되도록 합니다.

06

배터리 홀더의 (+), (-) 전선이 모터 드라이버의 전원부와 연결되도록 합니다.

07

모터 드라이버에서 우측 모터를 제어할 신호선을 아래와 같이 나노 보드 D5, D6에 연결 합니다.

08 모터 드라이버에서 좌측 모터를 제어할 신호선을 아래와 같이 나노 보드 D9, D10에 연결 합니다.

09

초음파센서의 전원부(VCC, GND)를 나노 보드와 연결 합니다.

(센서 VCC – 나노 5V, 센서 GND – GND)

10 초음파센서의 신호선(Trig, Echo)를 나노 보드와 연결 합니다. (센서 Trig – 나노 D2, 센서 Echo – D3)

01

아두이노 통합개발환경(IDE) 설치를 위해서 웹 브라우저에서 arduino.cc 로 접속해 주세요.

03

IDE 설치 파일을 다운로드하기 위해 사용하시는 운영체제(OS)를 선택해 주세요. (운영체제 Windows 10 이상 사용 시 설치 예시)

04 JUST DOWNLOAD를 클릭하면 파일이 다운로드 됩니다. (절차에 따라 설치)

05

(구버전 설치) SOFTWARE 메뉴 페이지 아래 부분으로 마우스 휠 스크롤하시면 Legacy IDE(1.8.X) 가 있습니다. (운영체제 Windows 7 이상 사용 시 설치 예시)

06 JUST DOWNLOAD를 클릭하면 파일이 다운로드 됩니다. (절차에 따라 설치)

New IDE (2.x.x) 실행화면

Legacy IDE(1.x.x) 실행 화면

09 테스트 코드

motor_test.ino ·						
1	//모터 테스트					
2	//바퀴 위치 및 회전방향에 따른 핀번호(~PWM) 변수	설정				
3	<pre>int wheelLeftFront = 9, wheelLeftBack = 10;</pre>	motor_test.ino				
4	<pre>int wheelRightFront = 5, wheelRightBack = 6;</pre>	—				
5		이 미터 미				
6	int spdL = 200, spdR = 200; //바퀴 속도	비 포니 포				
7						
8	<pre>void setup() {</pre>	L298N 모터 드라이버				
9	<pre>pinMode(wheelLeftFront, OUTPUT);</pre>					
10	<pre>pinMode(wheelLeftBack, OUTPUT);</pre>	자도 테人ㅌ 요				
11	<pre>pinMode(wheelRightFront, OUTPUT);</pre>	ㅋㅋ 네스트 ㅋ				
12	pinMode(wheelRightBack, OUIPUI);					
13	}					
14	weid loop() (
15	//2초 저지 1초 저지 2초 ㅎ지 1초 저지	(바보)				
17	analogWrite(wheel) eftFront spdl):					
18	analogWrite(wheelleftBack, 0):					
19	analogWrite(wheelRightFront, spdR);					
20	<pre>analogWrite(wheelRightBack, 0);</pre>					
21	delay(2000);					
22	<pre>analogWrite(wheelLeftFront, 0);</pre>					
23	<pre>analogWrite(wheelLeftBack, 0);</pre>					
24	<pre>analogWrite(wheelRightFront, 0);</pre>					
25	<pre>analogWrite(wheelRightBack, 0);</pre>					
26	delay(1000);					
27	<pre>analogWrite(wheelLeftFront, 0);</pre>					
28	<pre>analogWrite(wheelLeftBack, spdL);</pre>					
29	<pre>analogWrite(wheelRightFront, 0);</pre>					
30	<pre>analogWrite(wheelRightBack, spdR); delew(2000);</pre>					
31	delay(2000);					
32	analogwrite(wheelLettFront, 0);					
33	analogwrite(wheelRightEront 0);					
34	analogwrite(wheelRightBack 0).					
36	delay(1000):					
37	}					

usw_test.ino

1	//초음파 센서 테스트	
2	int trig = 2, echo = 3; //초음파센서 핀 번호	usw tast ina
3		usw_test.mo
4	<pre>void setup() {</pre>	
5	<pre>Serial.begin(9600);</pre>	HC-SBU7
6	<pre>pinMode(trig, OUTPUT);</pre>	
7	<pre>pinMode(echo, INPUT);</pre>	
8	}	식동 테스트 용
9		
10		
11	//조음파센서 거리 속성 및 사리얼모나버 술역	
12	float distance, duration;	
13	<pre>digitalWrite(trig, HIGH); delew(4);</pre>	
14	delay(1);	
15	digitalWrite(trig, LOW);	
10	duration = pulsein(echo, HigH);	2.
1/	distance = ((float)(340 * duration) / 10000) /	2;
18	Serial.printin(distance);	
19	J	
101		

10

초음파 장애물 회피로봇 전체 코드 (avoid_Robot.ino)

avoid_Robot.ino

1	//초음파센서로 장애물 피해가는 로봇
2	//바퀴 위치 및 회전방향에 따른 핀번호(~PWM) 변수 설정
3	<pre>int wheelLeftFront = 9, wheelLeftBack = 10;</pre>
4	<pre>int wheelRightFront = 5, wheelRightBack = 6;</pre>
5	int spdL = 200, spdR = 200; //속도 값
6	int the a set of USONMUL MA
2	1nt trig = 2, ecno = 3; //소금파센서 설정
9	void setun() {
10	Serial hegin(9600):
11	pinMode(trig_OUTDUT):
12	pinMode(echo_INDUT);
13	ninMode(wheell eftEront OUTPUT):
14	<pre>pinMode(wheelleftBack_OUTPUT);</pre>
14	ninMode(wheelRightEront_OUTPUT);
16	ninMode(wheelRightBack_OUTPUT):
17	}
18	J
19	void loop() {
20	//초음파세서 거리 측정 및 시리역모나터 축력
20	float distance, duration:
22	digitalWrite(trig. HTGH):
23	delav(1):
24	digitalWrite(trig, LOW):
25	duration = pulseIn(echo, HIGH);
26	distance = ((float)(340 * duration) / 10000) / 2;
27	<pre>Serial.println(distance);</pre>
28	
29	//로봇동작
30	<pre>if(distance > 15){</pre>
31	//장애물 15cm 이내에 없을 경우 전진
32	<pre>analogWrite(wheelLeftFront, spdL);</pre>
33	<pre>analogWrite(wheelLeftBack, 0);</pre>
34	<pre>analogWrite(wheelRightFront, spdR);</pre>
35	<pre>analogWrite(wheelRightBack, 0);</pre>
36	}else{
37	//장애물 15cm 이내에 있을 경우 방향전환
38	int rd = random(2); //좌,우 회전 랜덤 선택 (랜덤 값 : 0, 1)
39	int delayrd = random(200, 500); // 회전 반경, 반환 값 : 200 ~ 500
40	if(rd == 1){
41	//좌회전
42	<pre>analogWrite(wheelLeftFront, 0);</pre>
43	<pre>analogWrite(wheelLeftBack, spdL);</pre>
44	<pre>analogWrite(wheelRightFront, spdR);</pre>
45	<pre>analogWrite(wheelRightBack, 0);</pre>
46	}else{
47	//우회전
48	<pre>analogWrite(wheelLeftFront, spdL);</pre>
49	<pre>analogWrite(wheelLeftBack, 0);</pre>
50	<pre>analogWrite(wheelRightFront, 0);</pre>
51	<pre>analogWrite(wheelRightBack, spdR);</pre>
52	
53	<pre>delay(delayrd);</pre>
54	
55	}

Step <u>4. 테스트</u>

01

(신버전) 작성된 코드를 업로드하기 전, [툴] 메뉴에서 [보드]를 설정해 주세요.

02 (신버전) [보드] 설정이 되었다면 [포트]를 설정해 주세요.

Fi	le Edi	t Sketch	Tools He	lp					
	Ø	Ə (Auto Arch	o Format nive Sketch	Ctrl+T				
		sketch 1	Mar Seri	nage Libraries al Monitor	Ctrl+Shift+I Ctrl+Shift+M		Tip 0	아드이노	나누 보드 조르어
	1	2 3 4	Firm	al Plotter iware Updater pad SSL Root Certificates		once:	따라.	프로세서	리고 그는 이유 이
		5 6 7 8	Boal Port Get	rd: "Arduino Nano" : Board Info	Þ	repeatedly:		 ATmega ATmega ATmega 	328P 328P (Old Bootloader) 168
	Q	9 10	Proc	essor: "ATmega328P (Old Bootlo grammer	ader)"	ATmeqa328P ✓ ATmeqa328P (Old Bootloader) ATmeqa168			
			Burr	1 Bootioader]	1		

03 (신버전) [보드] 설정이 되었다면 [포트]를 설정해 주세요.

File Edit	Sketch	Tools Help			
	Ð	Auto Format	Ctrl+T	Г	
	sketch	Archive Sketch Manage Libraries	Ctrl+Shift+I		ㅋ 이드리 나 나 나는 여러 하러 ~
_	1 2	Serial Plotter	Ctri+Shirt+M		· · · · · · · · · · · · · · · · · · ·
1_)	3 4	Firmware Updater Upload SSL Root Certificates			따라 포트 면호는 다들 수 있음.
	5	Roard: "Arduino Nano"			coml 이 아닌 것을 선택
4	7	Get Board Info			COM7
	9 10	Processor: "ATmega328P"		ľ	COM1
Q		Programmer Burn Bootloader			

Step 4. 테스트

04

(구버전) 작성된 코드를 업로드하기 전, [툴] 메뉴에서 [보드]를 설정해 주세요.

파일 편집 스케지 툴.	도움말		
	나동 포맷	Ctrl+T	
	스케치 보관하기		
sketch_dec23a	인코딩 수정 & 새로 고침		
void se	라이브러리 관리	Ctrl+Shift+I	
VOIG DO	시리얼 모니터	Ctrl+Shift+M	
// pu	시리얼 플로터	Ctrl+Shift+L	, to run once:
	WiFi101 / WiFiNINA Firmware Updater	•	
}	보드: "Arduino Nano"	\$	보드 매니저
	프로세지: "AImega328P"	1	Arduino Yún
	포트	3	Arduino Uno
void lo	보드 정보 얻기		Arduino Duemilanove or Diecimila
// mu	프로그래머: "AVRISP mkil"		Arduino Nano
// pu	부트로더 굽기		Arduino Mega or Mega 2000

05 (구버전) [보드] 설정이 되었다면 [포트]를 설정해 주세요.

파일 편집 스케치 툴	- 도움말			
	자동 포맷	Ctrl+T		
	스케치 보관하기			
sketch_dec23a	인코딩 수정 & 새로 고침			
void se	라이브러리 관리	Ctrl+Shift+I		
	시리얼 모니터	Ctrl+Shift+M	Tip. 0	·두이노 나노 보드 송류에
// pu	시리얼 플로터	Ctrl+Shift+L	, to run once:	
	WiFi101 / WiFiNINA Firmware Upd	ater		프로제서가 다들 수 있음
}	보드: "Arduino Nano"	>		
,	프로세서: "ATmega328P"		ATmega328P	ATmega328P
	포트	2	ATmega328P (Old Bootloader)	ATmega328P (Old Bootloader)
void lo	보드 정보 얻기		ATmega168	ATmega168
// pu	프로그래머: "AVRISP mkll" 부트로더 굽기	>	to run repeat	

06 (구버전) [보드] 설정이 되었다면 [포트]를 설정해 주세요.

Step 4. 테스트

<초음파 센서 거리 측정 결과에 따라 바퀴 회전 방향 확인>

※ 테스트 경과가 업로드한 코드처럼 동작하지 않는다면? [Step2. 회로도 구성] 과 [Step 3. 코딩] 부분을 다시 확인하여 수정하시길 바랍니다.

Step 5. MDF 모형 조립

01 모터 드라이버가 결합된 MDF 모형을 좌, 우측면 MDF 모형에 결합 합니다.

02 초음파 센서를 MDF 모형 전면에 결합하고, MDF 모형을 조립 합니다.

Step 5. MDF 모형 조립

06 바퀴 결합부의 모양을 확인하고 기어박스에 꽂아 줍니다. (양쪽 동일)

05 MDF 모형 윗면을 스위치 구멍과 배터리 홀더 스위치를 맞춰 조립 합니다.

Step 5. MDF 모형 조립

Step 5. MDF 모형 조립

07 완성!

Memo

CODING PEOPLE ARDUINO PROJECT 초음파 장애물 회피 로봇

